自定义损失函数使用的隐藏坑 tensorflow2

tensorflow2,自定义损失函数使用的隐藏坑,博智网带你了解详细信息 。
Keras的核心原则是逐步揭示复杂性 , 可以在保持相应的高级便利性的同时 , 对操作细节进行更多控制 。当我们要自定义fit中的训练算法时 , 可以重写模型中的train_step方法 , 然后调用fit来训练模型 。
这里以tensorflow2官网中的例子来说明:
import numpy as npimport tensorflow as tffrom tensorflow import kerasx = np.random.random((1000, 32))y = np.random.random((1000, 1))class CustomModel(keras.Model):tf.random.set_seed(100)def train_step(self, data):# Unpack the data. Its structure depends on your model and# on what you pass to `fit()`.x, y = datawith tf.GradientTape() as tape:y_pred = self(x, training=True)# Forward pass# Compute the loss value# (the loss function is configured in `compile()`)loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)# Compute gradientstrainable_vars = self.trainable_variablesgradients = tape.gradient(loss, trainable_vars)# Update weightsself.optimizer.apply_gradients(zip(gradients, trainable_vars))# Update metrics (includes the metric that tracks the loss)self.compiled_metrics.update_state(y, y_pred)# Return a dict mapping metric names to current valuereturn {m.name: m.result() for m in self.metrics}# Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))outputs = keras.layers.Dense(1)(inputs)model = CustomModel(inputs, outputs)model.compile(optimizer="adam", loss=tf.losses.MSE, metrics=["mae"])# Just use `fit` as usualmodel.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 1ms/step - loss: 0.2783 - mae: 0.4257 <tensorflow.python.keras.callbacks.History at 0x7ff7edf6dfd0>
【自定义损失函数使用的隐藏坑 tensorflow2】这里的loss是tensorflow库中实现了的损失函数 , 如果想自定义损失函数 , 然后将损失函数传入model.compile中 , 能正常按我们预想的work吗?
答案竟然是否定的 , 而且没有错误提示 , 只是loss计算不会符合我们的预期 。
def custom_mse(y_true, y_pred):return tf.reduce_mean((y_true - y_pred)**2, axis=-1)a_true = tf.constant([1., 1.5, 1.2])a_pred = tf.constant([1., 2, 1.5])custom_mse(a_true, a_pred)<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>tf.losses.MSE(a_true, a_pred)<tf.Tensor: shape=(), dtype=float32, numpy=0.11333332>
以上结果证实了我们自定义loss的正确性 , 下面我们直接将自定义的loss置入compile中的loss参数中 , 看看会发生什么 。
my_model = CustomModel(inputs, outputs)my_model.compile(optimizer="adam", loss=custom_mse, metrics=["mae"])my_model.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 820us/step - loss: 0.1628 - mae: 0.3257<tensorflow.python.keras.callbacks.History at 0x7ff7edeb7810>
我们看到 , 这里的loss与我们与标准的tf.losses.MSE明显不同 。这说明我们自定义的loss以这种方式直接传递进model.compile中 , 是完全错误的操作 。
正确运用自定义loss的姿势是什么呢?下面揭晓 。
loss_tracker = keras.metrics.Mean(name="loss")mae_metric = keras.metrics.MeanAbsoluteError(name="mae")class MyCustomModel(keras.Model):tf.random.set_seed(100)def train_step(self, data):# Unpack the data. Its structure depends on your model and# on what you pass to `fit()`.x, y = datawith tf.GradientTape() as tape:y_pred = self(x, training=True)# Forward pass# Compute the loss value# (the loss function is configured in `compile()`)loss = custom_mse(y, y_pred)# loss += self.losses# Compute gradientstrainable_vars = self.trainable_variablesgradients = tape.gradient(loss, trainable_vars)# Update weightsself.optimizer.apply_gradients(zip(gradients, trainable_vars))# Compute our own metricsloss_tracker.update_state(loss)mae_metric.update_state(y, y_pred)return {"loss": loss_tracker.result(), "mae": mae_metric.result()}@propertydef metrics(self):# We list our `Metric` objects here so that `reset_states()` can be# called automatically at the start of each epoch# or at the start of `evaluate()`.# If you don't implement this property, you have to call# `reset_states()` yourself at the time of your choosing.return [loss_tracker, mae_metric]# Construct and compile an instance of CustomModelinputs = keras.Input(shape=(32,))outputs = keras.layers.Dense(1)(inputs)my_model_beta = MyCustomModel(inputs, outputs)my_model_beta.compile(optimizer="adam")# Just use `fit` as usualmy_model_beta.fit(x, y, epochs=1, shuffle=False)32/32 [==============================] - 0s 960us/step - loss: 0.2783 - mae: 0.4257<tensorflow.python.keras.callbacks.History at 0x7ff7eda3d810>
终于 , 通过跳过在 compile() 中传递损失函数 , 而在 train_step 中手动完成所有计算内容 , 我们获得了与之前默认tf.losses.MSE完全一致的输出 , 这才是我们想要的结果 。

推荐阅读