全微分的几何意义
【全微分的几何意义】
全微分的几何意义是对于某点P0=(X0,Y0),z=f(X,Y)的切平面 。
设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量 。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段近似代替曲线段 。
设函数y=f(x)在x的邻域内有定义,x及x+Δx在此区间内 。如果函数的增量Δy=f(x+Δx)-f(x)可表示为Δy=AΔx+o(Δx)(其中A是不不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小 。
推荐阅读
- 河蚌体内珍珠的形成过程是
- 12w灯泡一小时耗电量
- 10h是什么意思
- 猫屎咖啡是真的猫屎吗
- 牛肉是属于发的东西吗
- 全国雅思考点哪个最简单
- 辣椒酱的制作方法及配料
- 监控不显示画面怎么办
- 13妖什么牌
- 苹果x手机电池容量是多少
